Top 3 Products & Services


Dated: Aug. 13, 2004

Related Categories

Network+ Certification

By Najmi

OSI short for Open System Interconnection, an ISO standard for worldwide communications that defines a networking framework for implementing protocols in seven layers. ISO shorts for International Organization for Standardization. Founded in 1946, ISO is an international organization composed of national standards bodies from over 75 countries. For example, ANSI (American National Standards Institute) is a member of ISO. ISO has defined a number of important computer standards; the most significant of which is perhaps OSI (Open Systems Interconnection) a standardized architecture for designing networks.

In OSI layers control is passed from one layer to the next, starting at the application layer in one station, proceeding to the bottom layer, over the channel to the next station and back up the hierarchy.

In communications the term channel refers to a communications path between two computers or devices. It can refer to the physical medium (the wires) or to a set of properties that distinguishes one channel from another. For example, TV channels refer to particular frequencies at which radio waves are transmitted. IRC channels refer to specific discussions.

Most of the functionality in the OSI model exists in all communications systems, although two or three OSI layers may be incorporated into one.

OSI is also referred to as the OSI Reference Model or just the OSI Model.

Physical Layer

The physical layer is concerned with transmitting raw bits over a communication channel. The design issues have to do with making sure that when one side sends a 1 bit, the other side as a 1 bit, not as a 0 bit receives it. Typical questions here are how many volts should be used to represent a 1 and how many for a 0, how many microseconds a bit lasts, whether transmission may proceed simultaneously in both directions, how the initial connection is established and how it is torn down when both sides are finished, and how many pins the network connector has and what each pin is used for. The design issues here deal largely with mechanical, electrical, and procedural interfaces, and the physical transmission medium, which lies below the physical layer. Physical layer design can properly be considered to be within the domain of the electrical engineer.

7 Layers of the OSI Model

Data Link Layer

The main task of the data link layer is to take a raw transmission facility and transform it into a line that appears free of transmission errors in the network layer. It accomplishes this task by having the sender break the input data up into data frames (typically a few hundred bytes), transmit the frames sequentially, and process the acknowledgment frames sent back by the receiver. Since the physical layer merely accepts and transmits a stream of bits without any regard to meaning of structure, it is up to the data link layer to create and recognize frame boundaries. This can be accomplished by attaching special bit patterns to the beginning and end of the frame. If there is a chance that these bit patterns might occur in the data, special care must be taken to avoid confusion. The data link layer should provide error control between adjacent nodes.

A noise burst on the line can destroy a frame completely. In this case, the data link layer software on the source machine must retransmit the frame. However, multiple transmissions of the same frame introduce the possibility of duplicate frames. A duplicate frame could be sent, for example, if the acknowledgment frame from the receiver back to the sender was destroyed. It is up to this layer to solve the problems caused by damaged, list, and duplicate frames. The data link layer may offer several different service classes to the network layer, each of a different quality and with a different price.

Another issue that arises in the data link layer (and most of the higher layers as well) is how to keep a fast transmitter from drowning a slow receiver in data. Some traffic regulation mechanism must be employed in order to let the transmitter know how much buffer space the receiver has at the moment. Frequently, flow regulation and error handling are integrated, for convenience.

If the line can be used to transmit data in both directions, this introduces a new complication that the data link layer software must deal with. The problem is that the acknowledgment frames for A to B traffic competes for the use of the line with data frames for the B to A traffic. A clever solution piggybacking has been devised.

In most practical situations, there is a need for transmitting data in both directions. One way of achieving full-duplex data transmission would be to have two separate communication channels, and use each one for simplex data traffic (in different directions). If this were done, we would have two separate physical circuits, each with a "forward" channel (for data) and a "reverse" channel (for acknowledgment). In both cases the bandwidth of the reverse channel would be almost entirely wasted. In effect, the user would be paying the cost of two circuits but only using the capacity of one.

A better idea is to use the same circuit for data in both directions. In this model the data frames from A to B are intermixed with the acknowledgment frames from A to B. By looking at the "kind" field in the header of an incoming frame, the receiver can tell whether the frame is data or acknowledgment.

Although interweaving data and control frames on the same circuit is an improvement over having two separate physical circuits, yet another improvement is possible. When a data frame arrives, instead of immediately sending a separate control frame, the receiver restrains it and waits until the network layer passes it the next packet. The acknowledgment is attached to the outgoing data frame. In effect, the acknowledgment gets a free ride on the next outgoing data frame. The technique of temporarily delaying outgoing acknowledgment so that they can be hooked onto the next outgoing data frame is widely known as piggybacking.

Network Layer

This layer provides switching and routing technologies, creating logical paths, known as virtual circuits for transmitting data from node. Routing and forwarding are functions of this layer, as well as addressing, internetworking error handling, congestion control and packet sequencing.

The network layer is concerned with controlling the operation of the subnet. A key design issue is determining how packets are routed from source to destination. Routes could be based on static tables that are "wired into" the network and rarely changed. They could also be determined at the start of each conversation, for example a terminal session. Finally, they could be highly dynamic, being determined anew for each packet, to reflect the current network load.

If too many packets are present in the subnet at the same time, they will get in each other's way, forming bottlenecks. The control of such congestion also belongs to the network layer.

Since the operators of the subnet may well expect remuneration for their efforts, there is often some accounting function built into the network layer. At the very least, the software must count how many packets or characters or each customer sends bits, to produce billing information. When a packet crosses a national border, with different rates on each side, the accounting can become complicated.

When a packet has to travel from one network to another to get to its destination, many problems can arise. The addressing used by the second network may be different from the first one. The second one may not accept the packet at all because it is too large. The protocols may differ, and so on. It is up to the network layer to overcome all these problems to allow heterogeneous networks to be interconnected. In broadcast networks, the routing problem is simple, so the network layer is often thin or even nonexistent.

NFS uses Internetwork Protocol (IP) as its network layer interface. IP is responsible for routing, directing datagrams from one network to another. The network layer may have to break large datagrams, larger than MTU, into smaller packets and host receiving the packet will have to reassemble the fragmented datagram. The Internetwork Protocol identifies each host with a 32-bit IP address. IP addresses are written as four dot-separated decimal numbers between 0 and 255, e.g., The leading 1-3 bytes of the IP identify the network and the remaining bytes identify the host on that network. The network portion of the IP is assigned by InterNIC Registration Services, under the contract to the National Science Foundation, and the local network administrators assign the host portion of the IP, locally by For large sites, usually subnetted like ours, the first two bytes represent the network portion of the IP, and the third and fourth bytes identify the subnet and host respectively. Even though IP packets are addressed using IP addresses, hardware addresses must be used to actually transport data from one host to another. The Address Resolution Protocol (ARP) is used to map the IP address to it hardware.

Transport Layer

This layer provides transparent transfer of data between end systems, or hosts, and is responsible for end-to-end error recovery and flow control. It ensures complete data transfer.

The basic function of the transport layer is to accept data from the session layer, split it up into smaller units if need be, pass these to the network layer, and ensure that the pieces all arrive correctly at the other end. Furthermore, all this must be done efficiently, and in a way that isolates the session layer from the inevitable changes in the hardware technology.

Under normal conditions, the transport layer creates a distinct network connection for each transport connection required by the session layer. If the transport connection requires a high throughput, however, the transport layer might create multiple network connections, dividing the data among the network connections to improve throughput. On the other hand, if creating or maintaining a network connection is expensive, the transport layer might multiplex several transport connections onto the same network connection to reduce the cost. In all cases, the transport layer is required to make the multiplexing transparent to the session layer.

The transport layer also determines what type of service to provide to the session layer, and ultimately, the users of the network. The most popular type of transport connection is an error-free point-to-point channel that delivers messages in the order in which they were sent. However, other possible kinds of transport, service and transport isolated messages with no guarantee about the order of delivery, and broadcasting of messages to multiple destinations. The type of service is determined when the connection is established.

The transport layer is a true source-to-destination or end-to-end layer. In other words, a program on the source machine carries on a conversation with a similar program on the destination machine, using the message headers and control messages.

Many hosts are multi-programmed, which implies that multiple connections will be entering and leaving each host. Their needs to be some way to tell which message belong to which connection. The transport header is one place this information could be put.

In addition to multiplexing several message streams onto one channel, the transport layer musk takes care of establishing and deleting connections across the network. This requires some kind of naming mechanism, so that process on one machine has a way of describing with whom it wishes to converse. There must also be a mechanism to regulate the flow of information, so that a fast host cannot overrun a slow one. Flow control between hosts is distinct from flow control between switches, although similar principles apply to both.

Session Layer

This layer establishes, manages and terminates connections between applications. The session layer sets up, coordinates, and terminates conversations, exchanges, and dialogues between the applications at each end. It deals with session and connection coordination.

The session layer allows users on different machines to establish sessions between them. A session allows ordinary data transport, as does the transport layer, but it also provides some enhanced services useful in some applications. A session might be used to allow a user to log into a remote time-sharing system or to transfer a file between two machines.

One of the services of the session layer is to manage dialogue control. Sessions can allow traffic to go in both directions at the same time, or in only one direction at a time. If traffic can only go one way at a time, the session layer can help keep track of whose turn it is.

A related session service is token management. For some protocols, it is essential that both sides do not attempt the same operation at the same time. To manage these activities, the session layer provides tokens that can be exchanged. Only the side holding the token may perform the critical operation.

Another session service is synchronization. Consider the problems that might occur when trying to do a two-hour file transfer between two machines on a network with a 1-hour mean time between crashes. After each transfer was aborted, the whole transfer would have to start over again, and would probably fail again with the next network crash. To eliminate this problem, the session layer provides a way to insert checkpoints into the data stream, so that after a crash, only the data after the last checkpoint has to be repeated.

Presentation Layer

This layer provides independence from differences in data representation (e.g., encryption by translating from application to network format, and vice versa. The presentation layer works to transform data into the form that the application layer can accept. This layer formats and encrypts data to be sent across a network, providing freedom from compatibility problems. It is sometimes called the syntax layer.

The presentation layer performs certain functions that are requested sufficiently often to warrant finding a general solution for them, rather than letting each user solve the problems. In particular, unlike all the lower layers, which are just interested in moving bits reliably from here to there, the presentation layer is concerned with the syntax and semantics of the information transmitted.

A typical example of a presentation service is encoding data in a standard, agreed upon way. Most user programs do not exchange random binary bit strings. They exchange things such as people's names, dates, amounts of money, and invoices. These items are represented as character strings, integers, floating point numbers, and data structures composed of several simpler items.

Different computers have different codes for representing character strings, integers and so on. In order to make it possible for computers with different representation to communicate, the data structures to be exchanged can be defined in an abstract way, along with a standard encoding to be used "on the wire". The presentation layer handles the job of managing these abstract data structures and converting from the representation used inside the computer to the network standard representation.

The presentation layer is also concerned with other aspects of information representation. For example, data compression can be used here to reduce the number of bits that have to be transmitted and cryptography is frequently required for privacy and authentication.

Application Layer

This layer supports application and end-user processes. Communication partners are identified, quality of service is identified, user authentication and privacy are considered, and any constraints on data syntax are identified. Everything at this layer is application-specific. This layer provides application services for file transfers, e-mail and other network software services. Telnet and FTP are applications that exist entirely in the application level. Tiered application architectures are part of this layer.

The application layer contains a variety of protocols that are commonly needed. For example, there are hundreds of incompatible terminal types in the world. Consider the plight of a full screen editor that is supposed to work over a network with many different terminal types, each with different screen layouts, escape sequences for inserting and deleting text, moving the cursor, etc.

One way to solve this problem is to define an abstract network virtual terminal for which editors and other programs can be written to deal with. To handle each terminal type, a piece of software must be written to map the functions of the network virtual terminal onto the real terminal. For example, when the editor moves the virtual terminal's cursor to the upper left-hand corner of the screen, this software must issue the proper command sequence to the real terminal to get its cursor there too. All the virtual terminal software is in the application layer.

Another application layer function is file transfer. Different file systems have different file naming conventions, different ways of representing text lines, and so on. Transferring a file between two different systems requires handling these and other incompatibilities. This work, too, belongs to the application layer, as do electronic mail, remote job entry, directory lookup, and various other general-purpose and special-purpose facilities.

Now that you've gotten free know-how on this topic, try to grow your skills even faster with online video training. Then finally, put these skills to the test and make a name for yourself by offering these skills to others by becoming a freelancer. There are literally 2000+ new projects that are posted every single freakin' day, no lie!

Previous Article

Next Article

HTX Male Enhancement Pills's Comment
This design is wicked! You certainly know how to keep a reader entertained. Between your wit and your videos, I was almost moved to start my own blog (well, almost...HaHa!) Wonderful job. I really enjoyed what you had to say, and more than that, how you presented it. Too cool!
22 Sat Sep 2018
Admin's Reply:

Naomi Skin Care's Comment
Excellent site. A lot of helpful info here. I am sending it to a few pals ans additionally sharing in delicious. And of course, thank you for your sweat!
11 Tue Sep 2018
Admin's Reply:

Pure Essence CBD Oil Reviews's Comment
I blog frequently and I truly thank you for your content. This article has really peaked my interest. I am going to take a note of your site and keep checking for new information about once per week. I opted in for your RSS feed too.
08 Sat Sep 2018
Admin's Reply:

Lutragen Cream Review's Comment
Great post, I believe people should acquire a lot from this site its really user friendly. So much wonderful info on here :D.
07 Fri Sep 2018
Admin's Reply:

Lutragen Cream's Comment
That is a very good tip especially to those new to the blogosphere. Simple but very accurate information... Thanks for sharing this one. A must read post!
06 Thu Sep 2018
Admin's Reply:

Lutragen Cream's Comment
Thanks in support of sharing such a good idea, piece of writing is fastidious, thats why i have read it fully
06 Thu Sep 2018
Admin's Reply:

Livali Ageless Moisturizer Reviews's Comment
Thanks for this rattling post, I am glad I detected this site on yahoo.
19 Sun Aug 2018
Admin's Reply:

Livali Ageless Moisturizer Reviews's Comment
Great blog here! Also your website loads up very fast! What web host are you using? Can I get your affiliate link to your host? I wish my web site loaded up as fast as yours lol
18 Sat Aug 2018
Admin's Reply:

Christopher's Comment
What team you support? Buy cheap nhl jerseys authentic and save more now. Cheap Bengals Jerseys
09 Fri Feb 2018
Admin's Reply:

John's Comment
When is sales for real madrid jerseys cheap? Find site: Wholesale New England Patriots Jerseys
14 Sun Jan 2018
Admin's Reply:

Aliza's Comment
where to find cheap nfl jeerseys cheap yankee jerseys
17 Wed May 2017
Admin's Reply:

Lashay's Comment
elite nfl jersey, Fredric, nhl hockey jerseys for sale
20 Mon Mar 2017
Admin's Reply:

Alla's Comment
If not for your writing this topic could be very convoluted and obilque.
09 Wed Jan 2013
Admin's Reply:

I so agree with you Alla. When I was working on my Network+ exam, the OSI totally didn't make any sense from the material I was reading.

pawan kumar's Comment
i like.
17 Sat Nov 2012
Admin's Reply:

 My pleasure..

raj singh's Comment
intervew question
06 Mon Aug 2012
Admin's Reply:


CHANU's Comment
good warehouse. i want to know more on adhoc networks, manets, vanets.. can you provide details on this? thanks...
08 Tue Nov 2011
Admin's Reply:

 Thank you Chanu :) we will do our best to faciliate you more keep visiting our website.

Lilian's Comment
Very true! Makes a cnahge to see someone spell it out like that. :)
19 Wed Oct 2011
Admin's Reply:

 Thank you very much Lilian :P

rasika's Comment
best technician sporting sit...... thanks foe all...
07 Wed Sep 2011
Admin's Reply:

 Thank you Rasika

PS : We need your support and suggestion please read this article "We need your help

LORIE's Comment
08 Fri Jul 2011
Admin's Reply:

 Hi Lorie

I am fine. how are you :)

jivbalais's Comment
hi.....?//what's your name
08 Fri Jul 2011
Admin's Reply:

 my name is adam

thanks so much dude..
06 Sun Mar 2011
Admin's Reply:

You're Welcome Ashok

amit's Comment
why we need layers for networking? what are the advantages of these layer over a network model in which we only have a single layer.?
08 Tue Feb 2011
Admin's Reply:

Try going to this site for details.

bon's Comment
which layer in te OSI model is least important?
05 Tue Oct 2010
Admin's Reply:

There is no least important! They all do something very important.

13 Tue Jul 2010
Admin's Reply:

Thanks Kar.

vick's Comment
19 Thu Nov 2009
Admin's Reply:


tumwine edwin's Comment
i like the info
10 Tue Nov 2009
Admin's Reply: Thanks for the complement. It does get right to the point.